Abstract

Protonic ceramic cells merit extensive exploration, attributed to their innate capabilities for potent and environmentally benign energy conversion. In this work, a temperature-induced exsolution methodology to synthesize SrCo0.5Nb0.5O3-δ (SCN) nanoparticles (NPs) with notably elevated activity on the surface of PrSrCo1.8Nb0.2O6-δ (PSCN) is proposed, directly addressing the extant challenge of restrained catalytic activity prevalent in air electrode materials. In situ assessments reveal that SCN NPs commence exsolution from the matrix at temperatures surpassing 900 °C during straightforward calcination processes and maintain stability throughout annealing. Notably, the resultant SCN-PSCN interface facilitates vapor adsorption and protonation processes, which are poised to enhance surface reaction kinetics pertaining to the proton-involved oxygen reduction and evolution reaction (P-ORR and P-OER). A fuel-electrode-supported protonic ceramic cell leveraging SCN-PSCN as the air electrode manifests compelling performance, attaining a peak power density of 1.30 W·cm-2 in the fuel cell modality and a current density of 1.91 A·cm-2 at 1.3 V in the electrolysis mode, recorded at 650 °C. Furthermore, density functional theory calculations validate that the introduction of SCN NPs onto the PSCN surface conspicuously accelerates electrode reaction rates correlated with P-ORR and P-OER, by significantly mitigating energy barriers associated with surface oxygen and vapor dissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.