Abstract

The notion of superhigh computably enumerable (c.e.) degrees was first introduced by (Mohrherr in Z Math Logik Grundlag Math 32: 5---12, 1986) where she proved the existence of incomplete superhigh c.e. degrees, and high, but not superhigh, c.e. degrees. Recent research shows that the notion of superhighness is closely related to algorithmic randomness and effective measure theory. Jockusch and Mohrherr proved in (Proc Amer Math Soc 94:123---128, 1985) that the diamond lattice can be embedded into the c.e. tt-degrees preserving 0 and 1 and that the two atoms can be low. In this paper, we prove that the two atoms in such embeddings can also be superhigh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.