Abstract
Outflows are inevitably driven from the disk if the vertical component of the black hole (BH) gravity cannot resist the radiation force. We derive the mass-loss rate in the outflows by solving a dynamical equation for the vertical gas motion in the disk. The structure of a supercritical accretion disk is calculated with the radial energy advection included. We find that most inflowing gas is driven into outflows if the disk is accreting at a moderate Eddington-scaled rate (up to ∼100) at its outer edge, i.e., only a small fraction of gas is accreted by the BH, which is radiating at several Eddington luminosities, while it reaches around ten for extremely high accretion rate cases (). Compared with a normal slim disk, the disk luminosity is substantially suppressed due to the mass loss in the outflows. We apply the model to the light curves of the tidal disruption events (TDEs) and find that the disk luminosity declines very slowly with time even if a typical accretion rate is assumed at the outer edge of the disk, which is qualitatively consistent with the observed light curves in some TDEs and helps us to understand the energy deficient phenomenon observed in the TDEs. Strong outflows from supercritical accretion disks surrounding supermassive BHs may play crucial roles in their host galaxies, which can be taken as an ingredient in the mechanical feedback models. The implications of the results on the growth of supermassive BHs are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.