Abstract

We begin an investigation of hybridizable discontinuous Galerkin (HDG) methods for approximating the solution of Dirichlet boundary control problems governed by elliptic PDEs. These problems can involve atypical variational formulations, and often have solutions with low regularity on polyhedral domains. These issues can provide challenges for numerical methods and the associated numerical analysis. We propose an HDG method for a Dirichlet boundary control problem for the Poisson equation, and obtain optimal a priori error estimates for the control. Specifically, under certain assumptions, for a 2D convex polygonal domain we show the control converges at a superlinear rate. We present 2D and 3D numerical experiments to demonstrate our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.