Abstract

We have designed and built a magnetic imaging system for quantitative analysis of the rate of ongoing hidden corrosion of aircraft aluminum alloys in planar structures such as intact aircraft lap joints. The system utilizes a superconducting quantum interference device (SQUID) magnetometer that measures the magnetic field associated with corrosion currents. It consists of a three-axis (vector) SQUID differential magnetometer, magnetic, and rf shielding, a computer controlled x-y stage, sample registration, and positioning mechanisms, and data acquisition and analysis software. The system is capable of scanning planar samples with dimensions of up to 28 cm square, with a spatial resolution of 2 mm, and a sensitivity of 0.3 pT/Hz1/2 (at 10 Hz). In this article we report the design and technical issues related to this system, outline important data acquisition techniques and criteria for accurate measurements of the rate of corrosion, especially for weakly corroding samples, and present preliminary measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call