Abstract

A 9.4 Tesla superconducting magnet is designed and fabricated with a warm bore of 800 mm for neuroscience research. The superconducting magnet will be made of a NbTi Wire-in-Channel (WIC) conductor with a higher ratio of copper to non-copper, which thus sustains the high stresses. It is cooled to operate temperature at 4.2 K liquid helium. The cryostat system is cooled through GM cryocoolers, some used to cool the radiation shield, and the others realize the re-condensed liquid helium. The MRI magnet system has a high level of stored energy, about 134 MJ, and a relatively-lower nominal current, about 212.5 A. The magnet will be operated in a persistent current mode with a superconducting switch. The WIC wires are employed to meet the cryostability criteria to avoid any risks from quench. The protection circuit with the subdivision of the coil reduces the terminate voltage and hot-spot temperature. In the paper, the specifications of magnet system will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call