Abstract
Many classic and quantum devices need to operate at cryogenic temperatures, demanding advanced cryogenic digital electronics for processing the input and output signals on a chip to extend their scalability and performance. Here, we report a superconducting binary encoder with ultralow power dissipation and ultracompact size. We introduce a multigate superconducting nanowire cryotron (nTron) that functions as an 8-input OR gate within a footprint of approximately 0.5 μm2. Four cryotrons compose a 4-bit encoder that has a bias margin of 18.9%, an operation speed greater than 250 MHz, an average switching jitter of 75 ps, and a power dissipation of less than 1 μW. We apply this encoder to read out a superconducting-nanowire single-photon detector array whose pixel location is digitized into a 4-bit binary address. The small size of the nanowire combined with the low power dissipation makes nTrons promising for future monolithic integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.