Abstract

In order to obtain improvement in energy efficiency of urban rail transportation system by usage of regenerative breaking energy this article deals with modeling of the rail vehicle and energy storage, as well as, with proposing form of breaking energy flow control algorithm. The control algorithm is based on maximization of used regenerative breaking energy as well as maximization of a storage element charge-discharge life cycle. The critical thresholds of the algorithm should be obtained by optimization. The accurate simplified rail vehicle model with storage element model suitable for control algorithm optimization is developed in this article. In addition, control algorithm and optimization cost function are proposed in order to maximize used regenerative breaking energy and life cycle of the storage element. The roll of control algorithm during implementation phase on real vehicle will be generation of the reference signal for low level control algorithms of the supercapacitor converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.