Abstract
High-quality space target images are important for space surveillance and space attack defense confrontation. To obtain space target images with higher resolution and sharpness, this paper proposes an image super-resolution reconstruction network based on dual regression and a deformable convolutional attention mechanism (DCAM). Firstly, the mapping space is constrained by dual regression; secondly, deformable convolution is used to expand the perceptual field and extract the high-frequency features of the image; finally, the convolutional attention mechanism is used to calculate the saliency of the channel domain and the spatial domain of the image to enhance the useful features and suppress the useless feature responses. The experimental results show that the method outperforms the comparison algorithm in both objective quality evaluation index and localization accuracy on the space target image dataset compared with the current mainstream image super-resolution algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.