Abstract

The Haouz aquifer is undergoing climatic aridity and anthropic pressure largely related to the agricultural sector. In this study, special attention was given to the main factors that have a direct impact on the fluctuations of the piezometric level (PL). Different statistical analyses (cross-correlations, PCA, cascading analysis) of the relationship between these factors were applied here. The results identify three distinct groundwater operating systems. The first is manifested in areas dominated by groundwater irrigation. The correlation is insignificant between the PL and surface water (R ≤ ±0.3). The natural balance of the water cycle is then disturbed causing a pronounced deficit in the PL. The second system is perceptible in areas dominated by irrigation from surface water, while the third system is noticeable in Bour areas, cultivated in rainfed mode. For both systems, the hydrological cycle is preserved, and the contribution of surface water to groundwater recharge is noticeable (±0.4 ≤ R ≤ ±1). Drought transfer between the water cycle components occurs in a cascading process for both systems. These results can help decision-makers to identify the risks related to groundwater vulnerability to climatic variability and overexploitation in the Haouz region, allowing for the promotion of efficient groundwater management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call