Abstract

The static first and second hyperpolarizabilities of a number of spiromolecules with varying degree of polarity have been calculated at the HF and MP2 level using the 6-31+G* basis set and the B3LYP/6-31+G* optimized geometry. The variation of mean second hyperpolarizability in these molecular systems has been explained in terms of the ground state dipole moment, mean linear polarizability and second-order polarizability. A number of relationships among these quantities have been derived in the framework of the sum-over-state scheme and the generalized Thomas–Kuhn sum rule. The spiroconjugation results in the significant increase of the mean polarizability. The appreciable enhancement of first hyperpolarizability due to the spiroconjugation between two dipolar monomer units has been accounted for the rather significant increase of the mean polarizability tensor and the ground state dipole moment. The relatively larger value of the average second hyperpolarizability of the spiroconjugated molecules compared to that of the corresponding monomers arises from the rather significant increase of the nonaxial component γ xxyy . The replacement of spirocarbon by spirosilicon results in the enhancement of the cubic polarizability manifold. The donor–acceptor substituted spirocompounds are predicted to be the superior third-order nonlinear optical (NLO) phores. The nature of π-conjugation in the monomer units around the spirocenter shows a strong modulation of the NLO properties of spirocompounds. The influence of electron correlation on the NLO properties at the MP2 level has been found to be rather significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call