Abstract
This paper is concerned with an operator equation A x + B x + C x = x on ordered Banach spaces, where A is an increasing α-concave operator, B is an increasing sub-homogeneous operator and C is a homogeneous operator. The existence and uniqueness of its positive solutions is obtained by using the properties of cones and a fixed point theorem for increasing general β-concave operators. As applications, we utilize the fixed point theorems obtained in this paper to study the existence and uniqueness of positive solutions for two classes nonlinear problems which include fourth-order two-point boundary value problems for elastic beam equations and elliptic value problems for Lane–Emden–Fowler equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.