Abstract

A hierarchy of global spectral circulation models is introduced ranging from the shallow-water system via the primitive-equation dynamical core of the atmosphere to the Planet Simulator as a Global Climate Model (GCM) of Intermediate Complexity (MIC) which can be used to run climate and paleo-climate simulations for time scales up to ten thousand years or more in an acceptable real time. The priorities in development are set to speed, easy handling and portability with a modular structure suitable for problem-dependent configuration. Adaptions exist for the planetary atmospheres of Mars and of Saturn’s moon Titan and are being extended. Common coupling interfaces enable the addition of ocean, ice, vegetation models and more. An interactive mode with a Model Starter and a Graphical User Interface (GUI) is available to select a configuration from the available model suite, to set its parameters and inspect atmospheric fields while changing the models’ parameters on the fly. This is especially useful for teaching, debugging and tuning of parameterizations. An updated overview of the model suite’s features is presented based on the Earth-like climate model Planet Simulator with mixed-layer ocean introducing static and memory hysteresis in terms of a parameter sweep of the solar constant and CO2 concentrations. The static hysteresis experiment demonstrates that the solar constant varying by 20% reveals warm and snowball Earth climate regimes depending on the history of the system. This hysteresis subjected to a thermodynamic analysis shows the following features: i) Both climate regimes are characterized by global mean surface temperature and entropy growing with increasing solar constant. ii) The climate system’s efficiency decreases (increases) with increasing solar constant in present-day warm (snowball) climate conditions. iii) Climate transitions near bifurcation points are characterized by high efficiency associated with the system’s large distance from the stable regime. Memory hysteresis evolves when changing the direct atmospheric radiative forcing which, associated with a well-mixed CO2 concentration, modifies the planetary thermodynamic state, and hence the surface temperature. The hysteresis effected by different CO2 change rates is analysed: i) The response is due to infrared cooling (for constant temperature lapse-rate) which, in turn, is related to the surface temperature through the Stefan-Boltzmann law in a ratio proportional to the new infrared opacity. Subsequent indirect effects, that are water-vapour-greenhouse and ice-albedo feedbacks, enhance the response. ii) Different rates of CO2 variation may lead to similar transient climates characterized by the same global mean surface temperature but different values of CO2 concentration. iii) Far from the bifurcation points, the model’s climate depends on the history of the radiative forcing thus displaying a hysteresis cycle that is neither static nor dynamical, but is related to the memory response of the model determined by the mixed-layer depth of the ocean. Results are supported by a zero-dimensional energy balance model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call