Abstract

In the existing Statistics and Econometrics literature, there does not exist a statistical test which may test for all kinds of roots of the characteristic polynomial leading to an unstable dynamic response, i.e., positive and negative real unit roots, complex unit roots and the roots lying inside the unit circle. This paper develops a test which is sufficient to prove dynamic stability (in the context of roots of the characteristic polynomial) of a univariate as well as a multivariate time series without having a structural break. It covers all roots (positive and negative real unit roots, complex unit roots and the roots inside the unit circle whether single or multiple) which may lead to an unstable dynamic response. Furthermore, it also indicates the number of roots causing instability in the time series. The test is much simpler in its application as compared to the existing tests as the series is strictly stationary under the null (C01, C12).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.