Abstract

Let K be a field, D a finite distributive lattice and P the set of all join-irreducible elements of D. We show that if {y ∈ P | y ≥ x} is pure for any x ∈ P, then the Hibi ring ℛ K (D) is level. Using this result and the argument of sagbi basis theory, we show that the homogeneous coordinate rings of Schubert subvarieties of Grassmannians are level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.