Abstract
A variation of the classical backpropagation algorithm for neural network training is proposed and convergence is established using the perturbation results of Mangasarian and Solodov. The algorithm is similar to the successive overrelaxation (SOR) algorithm for systems of linear equations and linear complementary problems in using the most recently computed values of the weights to update the values on the remaining arcs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.