Abstract

This paper proposes a multi-stage stochastic programming formulation based on affine decision rules for the reservoir management problem. Our approach seeks to find a release schedule that balances flood control and power generation objectives while considering realistic operating conditions as well as variable water head. To deal with the non-convexity introduced by the variable water head, we implement a simple, yet effective, successive linear programming algorithm. We also introduce a novel non-linear inflow representation that captures serial correlation of arbitrary order. We test our method on a small real river system and discuss policy implications. Our results namely show that our method can decrease flood risk and increase production compared to the historical decisions, albeit at the cost of reduced final storages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call