Abstract

We present an approach to the construction of lower bounds for the coercivity and inf–sup stability constants required in a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations. The method, based on an Offline–Online strategy relevant in the reduced basis many-query and real-time context, reduces the Online calculation to a small Linear Program: the objective is a parametric expansion of the underlying Rayleigh quotient; the constraints reflect stability information at optimally selected parameter points. Numerical results are presented for coercive elasticity and non-coercive acoustics Helmholtz problems. To cite this article: D.B.P. Huynh et al., C. R. Acad. Sci. Paris, Ser. I 345 (2007).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.