Abstract

Precise control over the chirality and morphologies of polymer assemblies, a remaining challenge for both chemists and materials scientists, is receiving ever-increasing attention in the recent years. Herein, we report the subtle manipulation of the achiral spacers from the chiral stereocenter to the azobenzene (Azo) unit, of which the chiroptical consistency or chiroptical inversion of self-assemblies could be successfully controlled and present "two-fold" odd-even effect. Furthermore, morphological transitions from 0D spherical micelles, 1D worms, and nanowires to 3D vesicles, spindle- and dumbbell-shaped vesicles were also unexpectedly found to exhibit odd-even correlations. These observations were collectively elucidated by mesomorphic properties, stacking modes, chiroptical dynamics, and stimuli-responsive behaviors. Negligible modifications to the spacer structures can enable remarkable modulation of supramolecular chirality and anisotropic topologies in polymer assemblies, which is of great significance for the design of complex chiral functional polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.