Abstract

The subsurface fatigue crack generation processes in near α type titanium alloy were divided into four steps: (1) development of a saturated dislocation structure by cyclical micro-plastic strain accumulation, (2) generation of localized slip and/or microcracking to relax the stress concentration in the vicinity of a boundary, (3) microcrack growth and transition to main crack, and (4) crack propagation. The experimentals on transgranular facets formation in Ti-Fe-O alloy were reviewed and a subsurface fatigue crack generation model was discussed. The β platelets which were aligned between the recrystallized α grain and the recovered α grain were responsible for the microcrack generation to form (0001) tansgranular facet in the recrystallized α grains. A combination of the shear stress and tensile stress normal to the basal plane may give a trigger of the (0001) microcracking in the recrystallized α grain. The localized shear stress following slip off on the basal plane was activated at the microcrack tip in the recrystallizedαgrain, and the microcrack grew into the recrystallized α grain to form (0001) transgranular facet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.