Abstract
Salmonella enterica has evolved a type III protein secretion system that allows these enteropathogens to translocate effector molecules directly into the host cell cytoplasm. These effectors mediate a variety of responses, including cytoskeletal rearrangements, cytokine production, and in certain cells, the induction of apoptosis. We report here the characterization of a substrate of this secretion system in S. enterica serovar typhimurium (Salmonella typhimurium) that is homologous to the SopE protein of Salmonella dublin implicated in bacterial entry into cultured epithelial cells. The sopE locus is located within a cluster of genes that encode tail and tail fiber proteins of a cryptic P2-like prophage, outside of the centisome 63 pathogenicity island that encodes the invasion-associated type III secretion system. Southern hybridization analysis revealed that sopE is present in only a subset of S. enterica serovars and that the flanking bacteriophage genes are also highly polymorphic. Encoding effector proteins that are delivered through type III secretion systems in highly mobile genetic elements may allow pathogens to adapt rapidly by facilitating the assembly of an appropriate set of effector proteins required for successful replication in a new environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.