Abstract

Quantifying glutathione (GSH) in cells and organisms is of great significance for understanding the mechanism of oxidative stress in various physiological and pathological processes. However, the quantification by fluorescence bioimaging in living tissues has much stricter requirements than the "Petri dish"-cultured cells in flat plates. Based on the evaluation of the electronic structure and steric hindrance-tuned reactivity of phospha-substituted rhodamine with GSH, a reversible Förster resonance energy transfer (FRET) probe ZpSiP with a distinct performance (Kd =4.9 mM, t1/2 =0.57 s, k=81 M-1 s-1 ) is developed for real time quantifying GSH in living cells. Furthermore, the near-infrared (NIR) probe succeeded in sensitively tracking the dynamics of GSH in the real organisms bearing tumors, chronic renal failure, and liver fibrosis for unveiling the related pathological processes. We believe that the advance in chemistry with quantitative analysis methods will initiate more promising progress and broad applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.