Abstract

State Estimation (SE) is the basis of a variety of advanced applications used in most modern power systems. An SE problem formed with enough phasor measurement units (PMUs) data is simply a linear weighted least squares problem requiring no iterations. Thus, designing a minimum- cost placement of PMUs that guarantees observability of a power system becomes a worthy challenge. This paper proposes an equivalent integer linear programming method for substation-oriented optimal PMU placement (SOOPP). The proposed method uses an exhaustive search to determine a globally optimal solution representing the best PMU placement for that particular power system. To obtain a more comprehensive model, contingencies and the limitation of the number of PMU measurement channels are considered and embodied in the model as changes to the original constraints and as additional constraints. The proposed method is examined for applicability using the IEEE 14-bus, 118- bus and 300-bus test systems. The comparison between SOOPP results and results obtained by other methods reveals the excellence of SOOPP. Furthermore, practical large-scale power systems are also successfully analyzed using SOOPP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.