Abstract

In seismic exploration, regularized migration inversion of seismic data usually requires solving a weighted least-squares problem with constrains. It is well known that directly solving this problem using some decomposition techniques is very time-consuming, which makes it less possible for practical use. For iterative methods, previous research is mainly on solving the inverse model in a full space. In this paper, a robust subspace method is applied to seismic migration inversion with Gaussian beam representations of Green's function. The problem is first formulated by incorporating regularizing constraints, and then, it is changed from full space to subspace and solved by a trust-region method. To test the potential of the application of the developed method, synthetic data simulations are performed. The results show that this method is very promising for ill-posed seismic migration inversion problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.