Abstract

SUMMARYThe worst situation in computing the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation associated with an M‐matrix occurs when the corresponding linearizing matrix has two very small eigenvalues, one with positive and one with negative real part. When both eigenvalues are exactly zero, the problem is called critical or null recurrent. Although in this case the problem is ill‐conditioned and the convergence of the algorithms based on matrix iterations is slow, there exist some techniques to remove the singularity and transform the problem to a well‐behaved one. Ill‐conditioning and slow convergence appear also in close‐to‐critical problems, but when none of the eigenvalues is exactly zero, the techniques used for the critical case cannot be applied. In this paper, we introduce a new method to accelerate the convergence properties of the iterations also in close‐to‐critical cases, by working on the invariant subspace associated with the problematic eigenvalues as a whole. We present numerical experiments that confirm the efficiency of the new method.Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.