Abstract
We consider the minimization or maximization of the $J$th largest eigenvalue of an analytic and Hermitian matrix-valued function, and build on Mengi, Yildirim, and Kilic [SIAM J. Matrix Anal. Appl., 35, pp. 699--724, 2014]. This work addresses the setting when the matrix-valued function involved is very large. We describe subspace procedures that convert the original problem into a small-scale one by means of orthogonal projections and restrictions to certain subspaces, and that gradually expand these subspaces based on the optimal solutions of small-scale problems. Global convergence and superlinear rate-of-convergence results with respect to the dimensions of the subspaces are presented in the infinite dimensional setting, where the matrix-valued function is replaced by a compact operator depending on parameters. In practice, it suffices to solve eigenvalue optimization problems involving matrices with sizes on the scale of tens, instead of the original problem involving matrices with sizes on the scale...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.