Abstract
Studying and understanding the physical and chemical processes that govern hot Jupiters gives us insights on the formation of these giant planets. Having a constraint on the molecular composition of their atmosphere can help us pinpoint their evolution timeline. Namely, the metal enrichment and carbon-to-oxygen ratio can give us information about where in the protoplanetary disk a giant planet may have accreted its envelope, and, subsequently, indicate if it went through migration. Here we present the first analysis of the atmosphere of the hot Jupiter HIP 65Ab. Using near-infrared high-resolution observations from the IGRINS spectrograph, we detect H2O and CO absorption in the dayside atmosphere of HIP 65Ab. Using a high-resolution retrieval framework, we find a CO abundance of log(CO) = −3.85−0.36+0.33 , which is slightly underabundant with expectation from solar composition models. We also recover a low-water abundance of log(H2O) = −4.42 ± 0.18, depleted by 1 order of magnitude relative to a solar-like composition. Upper limits on the abundance of all other relevant major carbon- and oxygen-bearing molecules are also obtained. Overall, our results are consistent with a sub-stellar metallicity but slightly elevated C/O. Such a composition may indicate that HIP 65Ab accreted its envelope from beyond the water snowline and underwent a disk-free migration to its current location. Alternatively, some of the oxygen on HIP 65Ab could be condensed out of the atmosphere, in which case the observed gas-phase abundances would not reflect the true bulk envelope composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.