Abstract

Most organisms maintain a transmembrane sodium gradient for cell function. Despite the importance of Na(+) in physiology, no directly Na(+)-responsive signalling molecules are known. The CyaB1 and CyaB2 adenylyl cyclases of the cyanobacterium Anabaena PCC 7120 are inhibited by Na(+). A D360A mutation in the GAF-B domain of CyaB1 ablated cAMP-mediated autoregulation and Na(+) inhibition. Na(+) bound the isolated GAF domains of CyaB2. cAMP blocked Na(+) binding to GAF domains but Na(+) had no effect on cAMP binding. Na(+) altered GAF domain structure indicating a mechanism of inhibition independent of cAMP binding. DeltacyaB1 and DeltacyaB2 mutant strains did not grow below 0.6 mM Na(+) and DeltacyaB1 cells possessed defects in Na(+)/H(+) antiporter function. Replacement of the CyaB1 GAF domains with those of rat phosphodiesterase type 2 revealed that Na(+) inhibition has been conserved since the eukaryotic/bacterial divergence. CyaB1 and CyaB2 are the first identified directly Na(+)-responsive signalling molecules that function in sodium homeostasis and we propose a subset of GAF domains underpin an evolutionarily conserved Na(+) signalling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call