Abstract

The neural pathways responsible for conveying the steroid feedback signals that ultimately affect reproductive neuroendocrine function remain largely undefined. One possibility involves a direct projection from estrogen receptor (ER)-containing neurons to the median eminence (ME), a site of neuroendocrine peptide release. To examine this possibility, 8 ewes received stereotaxic injections of the retrograde neuronal tract-tracing compound cholera toxin-beta subunit (CT beta) into the ME. Neurons sending projections to the ME and containing ER were identified using a dual-label immunoperoxidase method. Double-labeled cells were found in distinct regions: (1) the ER-rich arcuate nucleus (ARC) that contained the greatest number of double-labeled cells, and (2) the organum vasculosum of the lamina terminalis (OVLT) which contained a very consistent, but low, number of double-labeled cells. While a fairly large number of retrogradely-labeled ARC neurons containing ER were identified, the majority of ER-containing ARC neurons were unlabeled and thus send projections elsewhere. Other regions containing high concentrations of ER-positive cells such as the medial preoptic area (MPOA), anterior hypothalamic area, and ventrolateral portion of the ventromedial hypothalamic nucleus, were devoid of double-labeled cells. Similarly, regions rich in neuroendocrine neurons such as the periventricular hypothalamus and paraventricular and supraoptic hypothalamic nuclei contained no double-labeled cells. These results suggest that modulation of neuroendocrine secretory activity may occur directly at the level of the ME by ER-containing neurons located within restricted regions of the hypothalamus and forebrain. However, the relatively low proportion of ER-containing neurons projecting to the ME suggests that the influence of estradiol upon neuroendocrine function also may include target sites other than the ME.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.