Abstract

Studies of antigen presentation in retina using mice that expressed green fluorescent protein (GFP) from a transgenic CD11c promoter found that retinal GFPhi cells possessed antigen presentation function. Subsequent studies found that these high GFPhi cells preferentially localized to sites of retinal injury, consistent with their APC function. Interest in the roles of macrophages in degenerative CNS diseases led us to study the GFPhi cells in a retinal model of neurodegeneration. We asked if apoptotic cone photoreceptor cell death in Rpe65-/- knockout mice induced the GFPhi cells, explored their relationship to resident microglia (MG), and tested their role in cone survival. Rpe65-/- mice were bred to CD11cGFP mice on the B6/J background. CD11cGFPRpe65-/- mice were also backcrossed to CX3CR1YFP-creERROSADTA mice so that CX3CR1+ mononuclear cells could be depleted by Tamoxifen. Retinas were analyzed by immunohistochemistry, confocal microscopy, fluorescence fundoscopy and flow cytometry. Elevated numbers of GFPhi cells were concentrated in photoreceptor cell layers of CD11cGFPRpe65-/- mice coinciding with the peak of cone death at 2 to 4weeks of age, and persisted for at least 14months. After the initial wave of cone loss, a slow progressive loss of cones was found that continued to retain GFPhi cells in the outer retina. Sustained, four-week Tamoxifen depletions of the GFPhi cells and MG in Rpe65-/- mice from day 13 to day 41, and from day 390 to day 420 promoted a small increase in cone survival. We found no evidence that the GFPhi cells were recruited from the circulation; all data pointed to a MG origin. MG and GFPhi cells were well segregated in the dystrophic retina; GFPhi cells were foremost in the photoreceptor cell layer, while MG were concentrated in the inner retina. The expression of GFP on a subset of retinal mononuclear cells in CD11cGFP mice identified a distinct population of cells performing functions previously attributed to MG. Although GFPhi cells dominated the macrophage response to cone death in the photoreceptor cell layer, their ablation led to only an incremental increase in cone survival. The ability to identify, ablate, and isolate these cells will facilitate analysis of this activated, antigen-presenting subset of MG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call