Abstract

The modular multilevel converter (MMC) with nearest level modulation (NLM) is widely used in the high voltage applications for low switching frequency and easy implementation. Existing literature has not provided a complete submodule (SM) fault ride-through scheme for MMC with NLM. In this paper, a strategy including fault detection, localization, redundancy, and recovery is proposed to ensure continuous operation of MMC under IGBT open-circuit faults conditions. It only requires a few hardware and software resources. The features of MMC and SMs with three types of failures are studied, respectively. Based on these, the fault detection method is proposed by using a simple hardware circuit, thus high computation complexity is avoided. Since current fault localization schemes are limited to MMC with carrier phase shifted pulse width modulation, this paper further proposes a strategy for MMC with NLM to locate the faulty SM and identify the fault type. After this, the fault redundancy and the proposed fault recovery method are applied to eliminate the fault and then exit the failure state. Therefore, the ability of SM fault ride-through can be realized. Analysis of failure characteristics are verified in simulation. Experimental results based on a single-phase MMC prototype with 11 SMs per arm are presented to demonstrate the validity of the proposed fault ride-through strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call