Abstract

Analysis of the human locomotor system using rigid-body musculoskeletal models has increased in the biomechanical community with the objective of studying muscle activations of different movements. Simultaneously, the finite element method has emerged as a complementary approach for analyzing the mechanical behavior of tissues. This study presents an integrative biomechanical framework for gait analysis by linking a musculoskeletal model and a subject-specific finite element model of the pelvis. To investigate its performance, a convergence study was performed and its sensitivity to the use of non-subject-specific material properties was studied. The total hip joint force estimated by the rigid musculoskeletal model and by the finite element model showed good agreement, suggesting that the integrative approach estimates adequately (in shape and magnitude) the hip total contact force. Previous studies found movements of up to 1.4 mm in the anterior-posterior direction, for single leg stance. These results are comparable with the displacement values found in this study: 0-0.5 mm in the sagittal axis. Maximum von Mises stress values of approximately 17 MPa were found in the pelvic bone. Comparing this results with a previous study of our group, the new findings show that the introduction of muscular boundary conditions and the flexion-extension movement of the hip reduce the regions of high stress and distributes more uniformly the stress across the pelvic bone. Thus, it is thought that muscle force has a relevant impact in reducing stresses in pelvic bone during walking of the finite element model proposed in this study. Future work will focus on including other deformable structures, such as the femur and the tibia, and subject-specific material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call