Abstract
Recent experimental data from the ITER critical heat flux (CHF) mock-ups was used to benchmark a 3D CFD code concerning subcooled boiling heat transfer for high heat flux removal. The predicted temperatures show good agreement with experimental measurements for a range of operating parameters and of cooling configurations. Specifically, it applies to a hypervapotron channel exposed to a 5 MW/m 2 surface heat load and cooled by velocity of 2 m/s. Such flow geometry and operating condition seem necessary for ITER-enhanced heat flux first wall modules if an adequate design margin in CHF is needed. A detailed CFD and heat transfer analysis performed on a prototyped CAD model provided a higher confidence on the design and is deemed a desirable feature for continued design exploration and optimization processes. This is particularly crucial in regard to flow distribution among the FW fingers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.