Abstract
Here we introduce a subclass of the class of Ockham algebras (L; f) for which L satisfies the property that for every x ∈ L, there exists n ≥ 0 such that fn(x) and fn+1(x) are complementary. We characterize the structure of the lattice of congruences on such an algebra (L; f). We show that the lattice of compact congruences on L is a dual Stone lattice, and in particular, that the lattice Con L of congruences on L is boolean if and only if L is finite boolean. We also show that L is congruence coherent if and only if it is boolean. Finally, we give a sufficient and necessary condition to have the subdirectly irreducible chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.