Abstract

It is widely recognised that over-reliance on GNSS (e.g GPS) for time synchronisation represents an acute threat to modern society, and a diversity of alternatives are required to mitigate the threat of an outage. This paper proposes a GNSS alternative using time dissemination over national scale transmission or distribution networks. The method utilises the same frequency bandwidth and coupling technology as established power line carrier technology in conjunction with modern chirp Spread Spectrum modulation. The basis of the method is the transmission of a time synchronised chirp from a central substation, coupled into the aerial modes of the transmission line. During GNSS operation, all substations can estimate the time of flight by correlating the received chirp with a time-synchronised local copy. During GNSS outage, time sychronisation to the central substation is maintained by correcting for the precalculated time of flight. It is shown that recent advances in chirp spread spectrum allow for a computationally efficient algorithm with the capacity to compute hundreds of thousand of chirp correlations every second, facilitating timing accuracy which satisfies the majority of smart grid applications. ATP-EMTP simulations of the method on large transmission networks demonstrate sub-μs timing accuracy even in the presence of low SNR and impulsive noise. An FPGA prototype demonstrates experimentally sub-μs accuracy for time dissemination over a distance of 700 m. Averaging over time is shown to facilitate satisfactory performance down to , which could extend the range of the system to a national scale and a time dissemination network invulnerable to wireless spoofing and jamming attack vectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call