Abstract

In this paper, a low power differential inductor-less Common Gate Low Noise Amplifier (CG-LNA) is presented for Wireless Sensor Network (WSN) applications. New Shunt feedback is employed with noise cancellation and Dual Capacitive Cross Coupling (DCCC) techniques to improve the performance of common gate structures in terms of gain, Noise Figure (NF) and power consumption. The shunt feedback path boosts the input conductance of the LNA in current reuse scheme. Both shunt feedback and current reuse bring power dissipation down considerably. In addition, the positive feedback is utilized to cancel the thermal noise of the input transistor. The proposed LNA is designed and simulated in 0.18 µm TSMC CMOS technology. Post layout Simulation results indicate a voltage gain of 16.5 dB with −3 dB bandwidth of 100 MHz–3 GHz. Also third order Input Intercept Point (IIP3) is equal to + 1 dBm. The minimum NF is 2.8 dB and the value of NF at 2.4 GHz is 2.9 dB. S11 is better than −13 dB in whole frequency range. The core LNA consumes 985 µW from a 1.8 V DC voltage supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.