Abstract

We aim to further constrain the properties and evolutionary stages of dense cores in Orion B9. The central part of Orion B9 was mapped at 350 micron with APEX/SABOCA. A sample of nine cores in the region were observed in C17O(2-1), H13CO+(4-3) (towards 3 sources), DCO+(4-3), N2H+(3-2), and N2D+(3-2) with APEX/SHFI. These data are used in conjunction with our previous APEX/LABOCA 870-micron dust continuum data. Many of the LABOCA cores show evidence of substructure in the higher-resolution SABOCA image. In particular, we report on the discovery of multiple very low-mass condensations in the prestellar core SMM 6. Based on the 350-to-870 micron flux density ratios, we determine dust temperatures of ~7.9-10.8 K, and dust emissivity indices of ~0.5-1.8. The CO depletion factors are in the range ~1.6-10.8. The degree of deuteration in N2H+ is ~0.04-0.99, where the highest value (seen towards the prestellar core SMM 1) is, to our knowledge, the most extreme level of N2H+ deuteration reported so far. The level of HCO+ deuteration is about 1-2%. We also detected D2CO towards two sources. The detection of subcondensations within SMM 6 shows that core fragmentation can already take place during the prestellar phase. The origin of this substructure is likely caused by thermal Jeans fragmentation of the elongated parent core. A low depletion factor and the presence of gas-phase D2CO in SMM 1 suggest that the core chemistry is affected by the nearby outflow. The very high N2H+ deuteration in SMM 1 is likely to be remnant of the earlier CO-depleted phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call