Abstract
A digital low-dropout (DLDO) regulator using p-type MOS (PMOS) and n-type MOS (NMOS) switches is proposed to achieve a sub-fs speed figure-of-merit (FoM) by reducing the total capacitance ( $C_{\mathrm {TOT}}$ ) and accomplishing a comparable output voltage droop ( $\Delta V_{\mathrm {OUT}}$ ) during a load transition. The proposed DLDO uses the segmented PMOS switches to fully turn on the NMOS array, which strengthens the intrinsic NMOS loop and maintains the undershoot and overshoot voltages of 88 and 42 mV, respectively, during an 88.4-mA load transition. In addition, with the aid of the proposed voltage doubler (VD)-based periodically refreshed level shifter (PRLS), the total capacitance of DLDO to drive NMOS array is reduced to 7.2 pF, which is 3.3 $\times $ smaller than that of previous work, extending the input voltage ( $V_{\mathrm {IN}}$ ) and load current ( $I_{\mathrm {LOAD}}$ ) ranges up to 0.9 V and 140 mA, respectively. The proposed DLDO is fabricated using a 28-nm CMOS process and achieves a 0.12-fs speed FoM that is 42.5 $\times $ smaller than the state-of-the-art designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.