Abstract

Pain-perceptual nociceptors (PPN) are essential sensory neurons that recognize harmful stimuli and can empower the human body to react appropriately and perceive precisely unusual or dangerous conditions in the real world. Furthermore, the sensitization-regulated nociceptors (SRN) can greatly assist pain-sensitive human to reduce pain sensation by normalizing hyperexcitable central neural activity. Therefore, the implementation of PPNs and SRNs in hardware using emerging nanoscale devices can greatly improve the efficiency of bionic medical machines by giving them different sensitivities to external stimuli according to different purposes. However, current most-normal organic/oxide transistors face a great challenge due to channel scaling, especially in the sub-10 nm channel technology. Here, a sub-10 nm indium-tin-oxide transistor with an ultrashort vertical channel as low as ≈3 nm, using sodium alginate bio-polymer electrolyte as gate dielectric, is demonstrated. This device can emulate important characteristics of PPN such as pain threshold, memory of prior injury, and pain sensitization/desensitization. Furthermore, the most intriguing character of SRN can be achieved by tuning the channel thickness. The proposed device can open new avenues for the fascinating applications of next-generation neuromorphic brain-like systems, such as bio-inspired electronic skins and humanoid robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call