Abstract

Rotenone induces neurotoxicity but its correlation with biochemical and cerebral changes in rat brain regions are not well defined. In the present study rotenone was administered (3, 6 and12 μg/μl) intranigrally in adult male SD rats and its effect was assessed on neuromuscular coordination and in different brain areas viz. striatum (STR), mid-brain (MB), frontal cortex (FC) and hippocampus (HP) cerebral and biochemical changes on 1st and 7th day after treatment. All the doses of rotenone significantly impaired neuromuscular coordination performance on Rota rod test on 1st and 7th day. TTC staining showed significant increase in cerebral injury volume on 1st and 7th day after rotenone treatment indicating mitochondrial enzyme deficiency but increase after 7th day was less that after 1st day. Rotenone treated rats showed significant decrease in GSH and increase in MDA in different brain regions though the pattern was varied. After 1 day of rotenone (6 and 12 μg) treatment significant decrease in GSH was observed in STR and MB while MDA was significantly increased only in MB. The maximal effect on GSH and MDA was obtained in STR and MB on 7th day after treatment with 12 μg dose of rotenone. Thus, based on the occurrence of changes, it may be suggested that impairment of neuromuscular coordination is inked to oxidative stress rather than mitochondrial enzyme deficiency, all the processes are correlated with each other with the progression of time. MB appeared as most sensitive brain area towards rotenone toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call