Abstract

Purpose: The welding quality and reducing production cost could be achieved by developing the automatic on-line welding quality monitoring system. However, investigation of welding fault to quantify the welding quality on the horizontal-position welding has been concentrated. Therefore, MD (Mahalanobis Distance) method on the vertical-position welding process by analysing the transform arc voltage and welding current gained from the on-line monitoring system has been applied. Design/methodology/approach: The transformed welding current and arc voltage data were taken from the experiment whereby the data number was 2500 data/s. The prediction of Contact Tip to Work Distance (CTWD) to gain best welding quality using the waveform variations were then taken from the experimental results. MD was employed to quantify the welding quality by analysing the transformed arc voltage and welding current. Finally, the optimal CTWD setting has verified the developed algorithms through additional experiments. Two kinds of experiments has been carried out by changing welding parameters artificially to verify the sensitivity and feasibility of WQ (Welding Quality) based on the concepts of MD and normal distribution. Findings: The results represented that WQ was fully capable of quantifying and qualifying the welding faults for automatic vertical-position welding process. Research limitations/implications: The arc welding process on the vertical-position compared to a horizontal-position welding is much more difficult because the metal transfer is influenced by the gravity force. To solve the problem, a new algorithm to monitor and control the welding fault during the arc welding process has been developed. Furthermore, optimization of welding parameters for the vertical-position welding process was really difficult to use the developed algorithms because they are only useful in selecting stored data and not for evaluating the effect of the variation of welding parameters on the weld ability. Practical implications: The developed algorithm could be achieved the highest welding quality at 15mm CTWD setting which the welding quality is 99.50% for the start section and 99.68% at the middle section. Originality/value: This paper proposed a new algorithm which employed the concepts of MD (Mahalanobis Distance) and normal distribution to describe a good quality welding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call