Abstract

This research goal is to appraise the effect of electronic waste on concrete properties by examining the mechanical properties of concrete reinforced with waste printed circuit boards (PCBs). PCB fibres, each 50 mm long, were mixed in varying proportions (1–5% by weight of cement). Silica fume (SF) was used as a 12% weight replacement for cement to conserve the properties of PCB fibre-reinforced concrete while tumbling cement consumption. Following a 28-day curing period, the fresh and hardened characteristics of PCB fibre-reinforced concrete were juxtaposed with those of conventional concrete. The experimental results led to the conclusion that 5% by weight of cement is the most effective proportion of PCB fibres to include in both PCB fibre-reinforced concrete and silica fume-modified PCB fibre-reinforced concrete. The addition of PCB fibres and silica fume significantly increased the mechanical strength of the concrete, making it suitable for high-strength concrete applications. Based on a similar investigational research design, an artificial neural network model was created, and it played a critical role in predicting the mechanical properties of the concrete. The model produced accurate results, with an R-squared (R2) value greater than 0.99.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.