Abstract

This study proposed a new magnetic abrasive finishing (MAF) method, in which a 6-axis robot with a magnetic machining tool was used to polish the inner surfaces of curved tubes. We have also developed a magnetic machining tool jig, which can be fixed at the front of the 6-axis robot, rotating freely and suitable for polishing the inner surfaces of curved tubes. In this study, we focused on investigating the machining parameters in the initial machining stage and precision finishing stage. Based on the characteristics of machining parameters, a multi-stage MAF process was conducted to obtain an inner surface with high quality and high efficiency. The experimental results showed that both the roughness Ra and Rz of inner surface in the initial machining stage significantly decreased with the increase in the mixed magnetic abrasives, to as low as less than 20 nm Ra in the precision finishing stage when the machining parameters were appropriately adjusted. In addition, the roughness Ra of inner surface could be further reduced to less than 10 nm Ra in the multi-stage MAF process. Finally, the magnetic flux density cloud map and the magnetic field line distribution map were analyzed in Ansys Maxwell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.