Abstract

Objectives: To analyse the wear behavior of AZ31bMg composite under vacuum and atmospheric conditions. Methods/ Statistical Analysis: The wear test is performed in vacuum and atmosphere at elevated temperature by varying the load and sliding distance based on pin- on - disc configuration using oil hardened steel as a counter face. Wear is measured in terms of weight loss using digital balance with an accuracy of 0.0001 g. The Micro structural study is carried out at the worn surface of the specimen. Then the results of vacuum and atmosphere testing are compared. Findings: From the study, it is observed that the wear (weight loss) increases with an increase in load and sliding distance. The same trend is observed when the specimen is tested at elevated temperature; wear rate increased with increase in temperature and it is due to softening of material on contact surfaces. And it is also found that the wear rate of specimen is increased when it is tested in a vacuum. Also, due to partial melted phases covering the pin surface, the weight loss of the specimen decreases with increase in vacuum. Wear debris was found on the surfaces of pin specimen. The Micro structural study is carried out at the worn surface of the pin specimen. The comparison of results indicated that there was a difference in wear behavior in different environments, and AZ31bMg composite could be considered as an excellent material at low temperature and high vacuum condition applications where high strength, less weight and wear resistance are of prime importance. Application/Improvements: The scope of tribology has become increased to embrace numerous areas such as aerospace, computing, micro mechanics and microelectronics. This in turn opens a broad scope for analyzing friction and wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.