Abstract

The reaction kinetics of the three-phase CO2 methanation for a commercial Ni/SiO2 catalyst suspended in a liquid phase is studied in a continuous stirred-tank slurry reactor at a CO2 partial pressure of 1 bar and temperatures from 220 °C to 320 °C. By applying different liquids, namely squalane, octadecane, and dibenzyltoluene, showing different gas solubilities, it is found that the gas concentration in the liquid phase and not the partial pressure in the gas phase is the driving force for the CO2 methanation reaction kinetics. The liquid phase does not influence the reaction kinetics but reduces the available gas concentrations and H2/CO2 ratio on the catalyst surface. Based on these findings, a kinetic rate equation for the three-phase CO2 methanation is developed additionally incorporating the chemical equilibrium limitations relevant in the temperature regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.