Abstract

Thermal dispersion in convective flow in porous media has been numerically investigated using a two-dimensional periodic model of porous structure. A macroscopically uniform flow is assumed to pass through a collection of square rods placed regularly in an infinite space, where a temperature gradient is imposed perpendicularly to the flow direction. Due to the periodicity of the model, only one structural unit can be taken for a calculation domain to resolve an entire domain of porous medium, Continuity, Navier-Stokes and energy equations are solved numerically to describe the microscopic velocity and temperature fields at a pore scale. The numerical results thus obtained are integrated over a unit structure to evaluate the thermal dispersion and the molecular diffusion due to tortuosity. The resulting correlation for a high Peclet number range agrees well with available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.