Abstract

This paper presents the vibration characteristics of a pantograph–catenary interaction in a rigid catenary system. Both computational simulation and laboratory tests are carried out to evaluate the frequency contents of pantograph strips. Based on the observation that irregular wear is characterized by the consistency between the pantograph strips’ wear pattern and the mode shape of their dominant modal frequencies, it is deducted that resonance occurs at the pantograph strip and the contact wire interface in the high frequency range. By applying damping treatment to the pantograph strip, and hence improving its damping property, a reduction of 7 dB in the total vibration level at the sliding contact can be achieved, as verified through field tests. It is also found that the worse the initial condition of the pantograph–catenary system, the more prominent the damping effects on the control of high-frequency vibration for irregular wear problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call