Abstract

In this paper, a comparison is made between direct and indirect perturbation approaches to solve the non-linear vibration equations of a piezoelectrically actuated cantilever microbeam. In this comparison, the equation of motion is considered according to Euler-Bernoulli theory with considering the non-linear geometric and inertia terms resulted from shortening effect. In the direct perturbation approach, the multiple scales method is directly applied to the partial differential equation of motion. In the indirect approach, the multiple scales perturbation technique is applied to the discretized equation of motion. It is shown that, if the equation of motion is discretized using one non-uniform microbeam mode shape as a comparison function, then the results of indirect perturbation approach will be identical to those of the direct perturbation approach. Moreover, it is observed that discretization using one uniform microbeam mode shape as a comparison function results in a different output. The concept of non-uniform microbeam mode shape is the linear mode shape of the microbeam by considering the geometric and inertia effects of the piezoelectric layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.