Abstract

This study focuses on the renovation and construction of compressed air energy storage chambers within abandoned coal mine roadways. The transient mechanical responses of underground gas storage chambers under a cycle are analyzed through thermal-solid coupling simulations. These simulations highlight changes in key parameters such as displacement, stress, and temperature within the chamber group during the loading and unloading processes of compressed air energy storage. It is found that within a cycle, the small circular chamber experiences the most significant deformation, with an average peak displacement of 0.24 mm, followed by the large circular chamber and horseshoe-shaped tunnels. The small circular chamber exhibits maximum tensile and compressive stresses. Therefore, special attention in engineering practice should be paid to the long-term safety and stability of small circular tunnels, and the stability of horseshoe-shaped tunnels should be also carefully considered. The findings from this study offer some insights for theoretical support and practical implementation in the planning, design, construction, and operation of high-pressure underground gas storage chambers for compressed air energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call