Abstract

The transbilayer distribution of phospholipids in chicken brain microsomal membranes has been investigated using trinitrobenzenesulfonic acid and phospholipase C from Clostridium weichii. The exposure of intact microsomes to trinitrobenzenesulfonic acid showed that the labelling of aminophospholipids followed biphasic kinetics, indicating that these membranes contain a fast- and a slow-reacting pool of aminophospholipids. Use of microsomes radioiodinated on their surface led to the conclusion that the fast-reacting pool may be located on the outer leaflet of the microsomal vesicles. It contains about 35% of the phosphatidylethanolamine, 29% of the ethanolamine plasmalogens and 18% of the phosphatidylserine. The treatment of intact microsomes with the phospholipase C Cl. welchii produced the hydrolysis of 50% of the phospholipids without any loss of their permeability properties, indicating that they are not permeable to the hydrolase. Phospholipids extracted from the microsomes were hydrolyzed rapidly by the phospholipase C with the exception of phosphatidylserine and phosphatidylinositol. In intact microsomes about 90% of phosphatidylcholine, 32% of ethanolamine phospholipids and 60% of sphingomyelin were accessible to the phospholipase. These results suggest that the phospholipids have an asymmetric distribution in chicken brain microsomes, the external leaflet containing about 75% of the choline phospholipids and 25% of the aminophospholipids, whereas an opposite distribution is observed in the inner leaflet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.